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Abstract

Solar flares are explosions on the Sun. They
happen when energy stored in magnetic fields
around solar active regions (ARs) is suddenly re-
leased. In this paper, we present a transformer-
based framework, named SolarFlareNet, for pre-
dicting whether an AR would produce a γ-class
flare within the next 24 to 72 hours. We con-
sider three γ classes, namely the ≥M5.0 class,
the ≥M class and the ≥C class, and build three
transformers separately, each corresponding to a
γ class. Each transformer is used to make pre-
dictions of its corresponding γ-class flares. The
crux of our approach is to model data samples in
an AR as time series and to use transformers to
capture the temporal dynamics of the data sam-
ples. Each data sample consists of magnetic pa-
rameters taken from Space-weather HMI Active
Region Patches (SHARP) and related data prod-
ucts. We survey flare events that occurred from
May 2010 to December 2022 using the Geosta-
tionary Operational Environmental Satellite X-ray
flare catalogs provided by the National Centers
for Environmental Information (NCEI), and build
a database of flares with identified ARs in the
NCEI flare catalogs. This flare database is used
to construct labels of the data samples suitable for
machine learning. We further extend the determin-
istic approach to a calibration-based probabilistic
forecasting method. The SolarFlareNet system is
fully operational and is capable of making near
real-time predictions of solar flares on the Web.

1. Introduction
Solar flares are sudden explosions of energy that occur on
the Sun’s surface. They often occur in solar active regions
(ARs), caused by strong magnetic fields typically associated
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with sunspot areas. Solar flares are categorized into five
classes A, B, C, M, and X, with A-class flares having the
lowest intensity and X-class flares having the highest inten-
sity. Major flares are usually accompanied by coronal mass
ejections and solar energetic particles (Qahwaji et al., 2008;
Bobra & Ilonidis, 2016; Liu et al., 2017; Liu et al., 2020; Ab-
duallah et al., 2022; Moreland et al., 2022). These eruptive
events can have significant and harmful effects on or near
Earth, damaging technologies, power grids, space stations,
and human life (Daglis et al., 2004; Liu et al., 2019; Zhang
et al., 2022; He et al., 2023). Therefore, providing accurate
and early forecasts of solar flares is crucial for disaster risk
management, risk mitigation, and preparedness.

Although a lot of effort has been devoted to flare prediction
(Huang, X. et al., 2013; Panos & Kleint, 2020; Georgoulis
et al., 2021; Tang et al., 2021), developing accurate, op-
erational near-real-time flare forecasting systems remains
a challenge. In the past, researchers designed statistical
models for the prediction of flares based on the physical
properties of active regions (Gallagher et al., 2002; Leka &
Barnes, 2007; Mason & Hoeksema, 2010). With the avail-
ability of large amounts of flare-related data (Georgoulis
et al., 2021), researchers started using machine learning
methods for flare forecasting (Bobra & Couvidat, 2015;
Liu et al., 2017; Abduallah et al., 2021a). More recently,
deep learning, which is a subfield of machine learning, has
emerged and showed promising results in predicting solar
eruptions, including solar flares (Liu et al., 2022; Sun et al.,
2022).

For example, Nishizuka et al. (Nishizuka et al., 2018)
developed deep neural networks to forecast M- and C-
class flares that would occur within 24 hours using data
downloaded from the Solar Dynamics Observatory (SDO)
(Pesnell, 2015) and the Geostationary Operational En-
vironmental Satellite (GOES). Sun et al. (Sun et al.,
2022) employed three-dimensional (3D) convolutional neu-
ral networks (CNNs) to forecast ≥M-class and ≥C-class
flares using Space-weather HMI Active Region Patches
(SHARP) (Bobra et al., 2014) magnetograms downloaded
from the Joint Science Operations Center (JSOC) accessible
at http://jsoc.stanford.edu/. Li et al. (Li et al.,
2020) also adopted a CNN model to forecast ≥M-class and
≥C-class flares using SHARP magnetograms where the au-
thors restructured the CNN layers in their neural network
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with different filter sizes. Deng et al. (Deng et al., 2021)
developed a hybrid CNN model to predict solar flares during
the rising and declining phases of Solar Cycle 24.

Some researchers adopted SHARP magnetic parameters in
time series for flare prediction. Static SHARP parameters
quantitatively describe the properties of ARs, especially
their ability to produce flares, at a given time. On the other
hand, dynamic information, such as the magnetic helicity
injection rate, sunspot motions, shear flows, and magnetic
flux emergence/flux cancelation, is more important for flare
forecasting. Using time series of SHARP parameters al-
lows a model to capture the relationship between the evo-
lution of magnetic fields of ARs and solar flares, hence
achieving more accurate flare predictions (Tian, 2022; van
Driel-Gesztelyi & Green, 2015). In an earlier study, Yu et
al. (Yu et al., 2009) added the evolutionary information of
ARs to a predictive model for the prediction of short-term
solar flares. More recently, Chen et al. (Chen et al., 2019)
designed a long short-term memory (LSTM) network to
identify precursors of solar flare events using time series
of SHARP parameters. LSTM is suitable for capturing the
temporal dynamics of time series. Liu et al. (Liu et al.,
2019) developed another LSTM network with a customized
attention mechanism to direct the network to focus on im-
portant patterns in time series of SHARP parameters. Sun
et al. (Sun et al., 2022) attempted to distinguish between
ARs with strong flares (≥M-class flares) and ARs with no
flare at all. The authors showed that combining LSTM
and CNN can better solve the “strong versus quiet” flare
prediction problem, with data from both Solar Cycle 23
and Cycle 24. All of the aforementioned studies provided
valuable models and algorithms in the field. However, the
existing methods focused on short-term forecasts (usually
within 24 hours). Furthermore, the models were not used as
operational systems.

In this paper, we propose a new deep learning approach to
predicting solar flares using time series of SHARP parame-
ters. Our approach employs a transformer-based framework,
named SolarFlareNet, which predicts whether there would
be a flare within 24 to 72 hours, where the flare could be
a ≥M5.0-, ≥M-, or ≥C-class flare. We further extend So-
larFlareNet to produce probabilistic forecasts of flares and
implement the probabilistic model into an operational, near
real-time flare forecasting system. Experimental results
demonstrate that SolarFlareNet generally performs better
than, or is comparable to, related flare prediction methods.

2. Results
2.1. Deterministic Prediction Tasks

For any given active region (AR) and time point t, we predict
whether there would be a γ-class flare within the next 24

hours (48 hours, 72 hours, respectively) of t where γ can be
≥M5.0, ≥M, or ≥C. A ≥M5.0-class flare means the GOES
X-ray flux value of the flare is above 5 × 10−5Wm−2. A
≥M-class flare refers to an X- or M-class flare. A ≥C-class
flare refers to an X-class, M-class, or C-class flare. We focus
on these three classes of flares due to their importance in
space weather (Bobra & Couvidat, 2015; Jonas et al., 2018;
Nishizuka et al., 2018; Liu et al., 2019). We developed
three transformer models to tackle the three prediction tasks
individually and separately. Notice that we did not consider
γ to be ≥X due to the lack of samples for X-class flares.
Instead, we use ≥M5.0 as the most significant class, which
contains sufficient samples.

2.2. Comparison with Previous Methods

We conducted a series of experiments to compare the
proposed SolarFlareNet framework with closely related
methods. All these methods perform binary classifica-
tions/predictions as defined above. We adopt several perfor-
mance metrics. Formally, given an AR and a data sample xt

observed at time point t, we define xt to be a true positive
(TP) if the ≥M5.0 (≥M, ≥C, respectively) model predicts
that xt is positive, i.e., the AR will produce a ≥M5.0- (≥M-,
≥C-, respectively) class flare within the next 24 hours of t,
and xt is indeed positive. We define xt as a false positive
(FP) if the ≥M5.0 (≥M, ≥C, respectively) model predicts
that xt is positive while xt is actually negative, i.e., the AR
will not produce a ≥M5.0- (≥M-, ≥C-, respectively) class
flare within the next 24 hours of t. We say xt is a true
negative (TN) if the ≥M5.0 (≥M, ≥C, respectively) model
predicts xt to be negative and xt is indeed negative; xt is a
false negative (FN) if the ≥M5.0 (≥M, ≥C, respectively)
model predicts xt to be negative while xt is actually positive.
We also use TP (FP, TN, and FN, respectively) to represent
the total number of true positives (false positives, true neg-
atives, and false negatives, respectively). The TP, FP, TN,
and FN for the 48-hour and 72-hour ahead predictions are
defined similarly. The performance metrics are calculated
as follows:

Recall =
TP

TP + FN
(1)

Precision =
TP

TP + FP
(2)

Accuracy (ACC) =
TP+ TN

TP+ FP + TN+ FN
(3)

Balanced ACC (BACC) =

(
TP

TP+FN + TN
TN+FP

)
2

(4)

True Skill Statistics (TSS) =
TP

TP + FN
− FP

FP + TN
(5)
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Table 1 compares SolarFlareNet with related methods for
24-hour ahead flare predictions. The performance metric
values of SolarFlareNet are mean values obtained from 10-
fold cross-validation (Liu et al., 2019). The metric values
of the highest performance models in the related studies are
taken directly from those studies and are displayed in Table
1. The symbol ‘—’ means that a method does not produce
the metric value for the corresponding prediction task. The
best metric values are highlighted in boldface. TSS is the
primary metric used in the literature on flare prediction. It
can be seen from Table 1 that SolarFlareNet outperforms
the state-of-the-art methods in terms of TSS except that Liu
et al. (Liu et al., 2019) perform better than SolarFlareNet in
predicting ≥M5.0 class flares.

Table 2 presents the mean performance metric values with
standard deviations enclosed in parentheses for the 48- and
72-hour forecasts made by SolarFlareNet. None of the
existing methods in Table 1 provides predictions in 48 or
72 hours in advance and, therefore, they are not listed in
Table 2. Overall, SolarFlareNet performs well for the 48-
and 72-hour forecasts. However, the metric values of the
tool in Table 2 are lower than those in Table 1. This is
understandable due to the longer range of predictions in
Table 2.

2.3. Probabilistic Forecasting with Calibration

SolarFlareNet is essentially a probabilistic forecasting
method, producing a probability between 0 and 1. The
method compares the probability with a predetermined
threshold, which is set to 0.5. Given an AR and a data sam-
ple xt at time point t, if the predicted probability is greater
than or equal to the threshold, then the AR will produce a
flare within the next 24 (48, 72, respectively) hours of t (i.e.,
xt belongs to the positive class); otherwise, the AR will
not produce a flare within the next 24 (48, 72, respectively)
hours of t (i.e., xt belongs to the negative class). We can
turn SolarFlareNet into a probabilistic forecasting method
by directly outputting the predicted probability without com-
paring it with the threshold. Under this circumstance, the
output is interpreted as a probabilistic estimate of how likely
the AR will produce a flare within the next 24 (48, 72, re-
spectively) hours of t. We employ a probability calibration
technique with isotonic regression (Kruskal, 1964; Sager &
Thisted, 1982) to adjust the predicted probability and avoid
the mismatch between the distributions of the predicted and
expected probabilistic values (Abduallah et al., 2022). We
add a suffix “-C” to SolarFlareNet to denote the network
without calibration.

To evaluate the performance of a probabilistic forecasting
method, we use the Brier score (BS) and Brier skill score
(BSS), defined as follows (Wilks, 2010; Liu et al., 2020;

Abduallah et al., 2022):

BS =
1

N

N∑
i=1

(yi − ŷi)
2 (6)

BSS = 1− BS
1
N

∑N
i=1(yi − ȳ)2

(7)

where N is the number of data samples in a test set; yi
denotes the observed probability and ŷi denotes the pre-
dicted probability of the ith test data sample, respectively;
ȳ = 1

N

∑N
i=1 yi denotes the mean of all the observed proba-

bilities. BS values range from 0 to 1, with 0 being a perfect
score. BSS values range from −∞ to 1, with 1 being a
perfect score.

Table 3 compares SolarFlareNet, used as a probabilistic fore-
casting method, with a closely related method (Liu et al.,
2019). The BS and BSS values in the table are mean values
(with standard deviations enclosed in parentheses) obtained
from 10-fold cross-validation. The metric values for the ex-
isting method are taken directly from the related work (Liu
et al., 2019). The best BS and BSS values are highlighted in
bold. Notice that the existing method did not make 48-hour
or 72-hour forecasts in advance. Table 3 shows that there is
no definitive conclusion regarding the relative performance
of SolarFlareNet and the existing method. The existing
method is better in terms of BS, while SolarFlareNet is
better in terms of BSS. On the other hand, the calibrated
version of a model is better than the model without calibra-
tion. Notice also that the results of the 48-hour and 72-hour
forecasts are worse than those of the 24-hour forecasts. This
is understandable since the longer the prediction window,
the worse the performance a model achieves due to data
deviation over time.

2.4. The SolarFlareNet System

We have implemented the probabilistic forecasting method
described above into an operational, near real-time flare
forecasting system. To access the system, visit the SolarDB
website at https://nature.njit.edu/solardb/
index.html. On the website, select and click the menu
entry “Tools” and then select and click “Flare Forecasting
System.” Figure 1 shows the graphical user interface (GUI)
of the system. It displays a probabilistic estimate of how
likely an AR will produce a flare within the next 24, 48, and
72 hours of the time point at which the system is updated
each day. No prediction is made for an AR marked with a
special character *, #, or ∼ where

• * means the AR is near the limb,

• # means the AR is spotless with the number of spots
being zero,

https://nature.njit.edu/solardb/index.html
https://nature.njit.edu/solardb/index.html
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Metric Method ≥M5.0 class ≥M class ≥C class
Recall Huang et al. (Huang et al., 2018) — — —

Li et al. (Li et al., 2020) — 0.817 0.889
Liu et al. (Liu et al., 2019) 0.960 0.885 0.773
Sun et al. (Sun et al., 2022) — 0.925 0.862
Wang et al. (Wang et al., 2020) — 0.730 0.621
This work 0.853 0.842 0.891

Precision Huang et al. (Huang et al., 2018) — — —
Li et al. (Li et al., 2020) — 0.889 0.906
Liu et al. (Liu et al., 2019) 0.048 0.222 0.541
Sun et al. (Sun et al., 2022) — 0.595 0.878
Wang et al. (Wang et al., 2020) — 0.282 0.541
This work 0.977 0.848 0.949

ACC Huang et al. (Huang et al., 2018) — — —
Li et al. (Li et al., 2020) — 0.891 0.861
Liu et al. (Liu et al., 2019) 0.921 0.907 0.826
Sun et al. (Sun et al., 2022) — 0.904 0.879
Wang et al. (Wang et al., 2020) — 0.945 0.883
This work 0.964 0.928 0.915

BACC Huang et al. (Huang et al., 2018) — — —
Li et al. (Li et al., 2020) — — —
Liu et al. (Liu et al., 2019) 0.940 0.896 0.806
Sun et al. (Sun et al., 2022) — — —
Wang et al. (Wang et al., 2020) — — —
This work 0.926 0.919 0.917

TSS Huang et al. (Huang et al., 2018) — 0.662 0.487
Li et al. (Li et al., 2020) — 0.749 0.679
Liu et al. (Liu et al., 2019) 0.881 0.792 0.612
Sun et al. (Sun et al., 2022) — 0.826 0.756
Wang et al. (Wang et al., 2020) — 0.681 0.553
This work 0.818 0.839 0.835

Table 1. Performance comparison between SolarFlareNet and related methods for 24-hour ahead flare predictions.

Metric Hour ≥M5.0 class ≥M class ≥C class
Recall 48 0.739 (0.108) 0.735 (0.089) 0.722 (0.089)

72 0.717 (0.100) 0.708 (0.078) 0.702 (0.089)
Precision 48 0.890 (0.210) 0.823 (0.092) 0.812 (0.072)

72 0.872 (0.045) 0.812 (0.089) 0.809 (0.051)
ACC 48 0.923 (0.003) 0.907 (0.007) 0.896 (0.047)

72 0.906 (0.002) 0.883 (0.005) 0.863 (0.040)
BACC 48 0.864 (0.054) 0.857 (0.045) 0.848 (0.040)

72 0.856 (0.039) 0.843 (0.048) 0.834 (0.029)
TSS 48 0.736 (0.112) 0.728 (0.090) 0.719 (0.079)

72 0.729 (0.108) 0.714 (0.095) 0.709 (0.058)

Table 2. Performance metric values of SolarFlareNet for 48- and 72-hour ahead flare predictions.
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Hour Metric Method ≥M5.0 class ≥M class ≥C class
24

BS Liu et al. (Liu et al., 2019) 0.090 (0.011) 0.090 (0.009) 0.133 (0.007)
SolarFlareNet 0.226 (0.024) 0.244 (0.013) 0.285 (0.034)
SolarFlareNet-C 0.263 (0.024) 0.281 (0.050) 0.313 (0.033)

BSS Liu et al. (Liu et al., 2019) −21.576 (2.956) −2.241 (0.319) 0.152 (0.047)
SolarFlareNet 0.584 (0.022) 0.521 (0.042) 0.409 (0.062)
SolarFlareNet-C 0.504 (0.026) 0.491 (0.031) 0.349 (0.055)

48
BS Liu et al. (Liu et al., 2019) — — —

SolarFlareNet 0.272 (0.091) 0.312 (0.101) 0.361 (0.091)
SolarFlareNet-C 0.315 (0.049) 0.336 (0.033) 0.378 (0.104)

BSS Liu et al. (Liu et al., 2019) — — —
SolarFlareNet 0.569 (0.045) 0.524 (0.021) 0.502 (0.033)
SolarFlareNet-C 0.457 (0.062) 0.424 (0.091) 0.411 (0.056)

72
BS Liu et al. (Liu et al., 2019) — — —

SolarFlareNet 0.313 (0.062) 0.327 (0.063) 0.344 (0.049)
SolarFlareNet-C 0.329 (0.094) 0.369 (0.088) 0.376 (0.102)

BSS Liu et al. (Liu et al., 2019) — — —
SolarFlareNet 0.549 (0.067) 0.524 (0.089) 0.501 (0.093)
SolarFlareNet-C 0.514 (0.077) 0.469 (0.095) 0.447 (0.059)

Table 3. Performance comparison between SolarFlareNet and an existing method for probabilistic flare predictions (24 to 72 hours in
advance).

• ∼ means no SHARP data is available for the AR.

The system provides daily predictions based on the data ob-
tained from the previous day. When the user clicks the link
to the previous day, the user is led to the SolarMonitor site
that is accessible at https://www.solarmonitor.
org/index.php where detailed AR information for that
day is available. The system also provides previous forecast-
ing results since the operational system came online. We
compare the previous forecasting results with the true flare
events in the GOES X-ray flare catalogs provided by NCEI.
The SolarFlareNet system achieves 89% (76%, 71%, respec-
tively) accuracy for 24-hour (48-hour, 72-hour, respectively)
ahead predictions.

3. Discussion and Conclusion
In this paper, we present a novel transformer-based frame-
work to predict whether a solar active region (AR) would
produce a γ-class flare within the next 24 to 72 hours where
γ is ≥M5.0, ≥M, or ≥C. We use three transform models to
handle the three classes of flares individually and separately.
All three transformer models perform binary predictions.
We collect ARs with flares that occurred between 2010 and
2022 from the GOES X-ray flare catalogs provided by the
National Centers for Environmental Information (NCEI).
In addition, we downloaded SHARP magnetic parameters
from the Joint Science Operations Center (JSOC). Each data

sample contains SHARP parameters suitable for machine
learning. We conducted experiments using 10-fold cross-
validation (Liu et al., 2019). Based on the experiments, our
transformer-based framework generally performs better than
closely related methods in terms of TSS (true skill statis-
tics), as shown in Table 1. We further extend our framework
to produce probabilistic forecasts of flares and implement
the framework into an operational, near real-time flare fore-
casting system accessible on the Web. The probabilistic
framework is comparable to a closely related method (Liu
et al., 2019) in terms of BS (Brier score) and BSS (Brier
skill score) when making 24-hour forecasts, as shown in
Table 3, although the existing method did not make 48- or
72-hour forecasts. Thus, we conclude that SolarFlareNet is
a feasible tool for producing flare forecasts within 24 to 72
hours.

4. Methods
4.1. Data Collection

In this study we used SHARP magnetic parameters (Bobra
et al., 2014; Bobra & Ilonidis, 2016; Liu et al., 2019) down-
loaded from the Joint Science Operations Center (JSOC)
accessible at http://jsoc.stanford.edu/. Specif-
ically, we collect data samples, composed of SHARP pa-
rameters, at a cadence of 12 minutes where the data samples
are retrieved from the hmi.sharp cea 720s data series on

https://www.solarmonitor.org/index.php
https://www.solarmonitor.org/index.php
http://jsoc.stanford.edu/


A Deep Learning Approach to Operational Flare Forecasting

Figure 1. The graphical user interface of the SolarFlareNet system.

the JSOC website using the Python package SunPy (The
SunPy Community et al., 2015). We selected nine SHARP
magnetic parameters as suggested in the literature (Bobra
& Couvidat, 2015; Bobra & Ilonidis, 2016; Liu et al., 2017;
2019; Liu et al., 2020). These nine parameters include the
total unsigned current helicity (TOTUSJH), total unsigned
vertical current (TOTUSJZ), total unsigned flux (USFLUX),
mean characteristic twist parameter (MEANALP), sum of
flux near polarity inversion line (R VALUE), total photo-
spheric magnetic free energy density (TOTPOT), sum of
the modulus of the net current per polarity (SAVNCPP),
area of strong field pixels in the active region (AREA ACR),
and absolute value of the net current helicity (ABSNJZH).
Table 4 presents an overview of the nine parameters. The
SHARP parameters’ values are in different scales and units;
therefore, we normalize each parameter’s values using the
min-max normalization method (Liu et al., 2020; Abduallah
et al., 2022). Formally, let pki be the original value of the ith
parameter of the kth data sample. Let qki be the normalized
value of the ith parameter of the kth data sample. Let mini

be the minimum value of the ith parameter. Let maxi be
the maximum value of the ith parameter. Then

qki =
pki −mini

maxi −mini
(8)

We collected A-, B-, C-, M- and X-class flares that occurred
between May 2010 and December 2022, and their associ-
ated active regions (ARs) from the GOES X-ray flare cat-
alogs provided by the National Centers for Environmental
Information (NCEI). Flares without identified ARs were ex-
cluded. This process yielded a database of 8 A-class flares,
6,571 B-class flares, 8,973 C-class flares, 895 M-class flares,
and 58 X-class flares. Also, we collected 10 nonflaring ARs
(Hazra et al., 2020). We collected data samples that were 24
(48, 72, respectively) hours before a flare. Furthermore, we
collected data samples that were 24 (48, 72, respectively)
hours after the start time of each nonflaring AR. The data
was then cleaned as follows (Bobra & Ilonidis, 2016; Liu
et al., 2019; Abduallah et al., 2022).

We discard ARs that are outside ± 70◦ of the central merid-
ian. These ARs are near the limb and have projection effects
that render the calculation of the ARs’ SHARP parameters
incorrect. In addition, we discard a data sample if (i) its cor-
responding flare record has an absolute value of the radial
velocity of SDO greater than 3500 m s−1, (ii) the HMI data
have low quality (Hoeksema et al., 2014), or (iii) the data
sample has missing values or incomplete SHARP parame-
ters. Thus, we exclude low-quality data samples and keep
qualified data samples of high quality in our study.
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Keyword Description Formula
TOTUSJH Total unsigned current helicity Hctotal

∝ ∑ |Bz · Jz|
TOTUSJZ Total unsigned vertical current Jztotal

=
∑ |Jz|dA

USFLUX Total unsigned flux Φ =
∑ |Bz|dA

MEANALP Mean characteristic twist parameter, α αtotal ∝
∑

JzBz∑
B2

z

R VALUE Sum of flux near polarity inversion line Φ =
∑ |BLoS |dA within R mask

TOTPOT Total photospheric magnetic free energy density ρtot ∝
∑

(BBBObs −BBBPot)2dA

SAVNCPP Sum of the modulus of the net current per polarity Jzsum
∝ |∑B+

z JzdA|+ |∑B−
z JzdA|

AREA ACR Area of strong field pixels in the active region Area =
∑

Pixels
ABSNJZH Absolute value of the net current helicity Hcabs

∝ |∑Bz · Jz|

Table 4. Overview of the nine SHARP parameters used in our study.

4.2. Data Labeling

Data labeling is crucial in machine learning. To predict
≥C-class flares, suppose that a C-, M-, or X-class flare
occurs at time point t on an AR (more precisely, the start
time of the flare is t). Data samples between t and t − 24
hours (48, 72 hours, respectively) in the AR are labeled
positive. If the flare occurs at time point t is an A-class or
B-class flare, the data samples between t and t − 24 hours
(48, 72 hours, respectively) in the AR are labeled negative.
Figure 2 illustrates the labeling scheme to predict whether a
≥C-class flare would occur within 24 hours. In predicting
≥M-class flares, we use ≥M-class flares to label positive
data samples; use ≤C-class flares to label negative data
samples. In predicting ≥M5.0-class flares, we use ≥M5.0-
class flares to label positive data samples; use ≤C-class
flares as well as M1.0- through M4.0-class flares to label
negative data samples. If there are recurring flares whose
corresponding data samples overlap, we give priority to the
largest flare and label the overlapped data samples based
on the largest flare. In all three prediction tasks, the data
samples in the nonflaring ARs are labeled negative.

Table 5 shows the total numbers of positive and negative
data samples in each class for 24-, 48-, and 72-hour ahead
flare predictions. The numbers in the table are lower than
expected. This is because we discarded/removed many low-
quality data samples as described above. If a gap occurs in
the middle of a time series due to removal, we use a zero-
padding strategy (Liu et al., 2019; Abduallah et al., 2022) to
create a synthetic data sample to fill the gap. The synthetic
data sample has zero values for all nine SHARP parameters.
The synthetic data sample is added after normalization of the
values of the SHARP parameters, and therefore the synthetic
data sample does not affect the normalization procedure.

For each prediction task, we divide the corresponding data
samples into 10 equal sized distinct partitions/folds that are
used to perform 10-fold cross-validation experiments. In
the run i, where 1 ≤ i ≤ 10, we use fold i as the test set
and the union of the other nine folds as the training set. The

data samples of the same AR are placed in the training set or
the test set, but not both. This scheme ensures that a model
is trained with data different from the test data and makes
predictions on the test data that it has never seen during
training. There are 10 folds and, consequently, 10 runs. The
means and standard deviations of the performance metrics’
values over the 10 runs are calculated and recorded.

4.3. Data Augmentation

The data sets used in this study to predict flares of the ≥M-
and ≥M5.0-class are imbalanced as shown in Table 5 where
negative data samples are much more than positive data sam-
ples. Imbalanced data pose a challenge in model training
and often result in poor model performance. One may use
data augmentation to combat the imbalanced data. Data aug-
mentation is an important technique that enriches training
data and increases the generalization of the model (Deng
et al., 2021). Here, we adopt the Gaussian white noise
(GWN) data augmentation scheme because it has shown a
significant improvement in model performance(Um et al.,
2017; Li et al., 2020). GWN assumes that any two values
are statistically independent, regardless of how close they
are in time. The stationary random values of GWN are
generated using the zero mean and 5% of the standard devi-
ation. During training, the data augmentation is applied to
the minority (positive) class, leaving the majority (negative)
class as is. During testing, the data are left without any
augmentation so that the model predicts only on the actual
test data to avoid any misleading performance assessment.

4.4. The SolarFlareNet Architecture

Figure 3 presents the architecture of SolarFlareNet. It
is a transformer-based framework that combines a one-
dimensional convolutional neural network (Conv1D), long
short-term memory (LSTM), transformer encoder blocks
(TEBs), and additional layers that include batch normaliza-
tion (BN) layers, dropout layers, and dense layers. The first
layer is the input layer, which takes as input a time series
of m consecutive data samples xt−m+1, xt−m+2 . . .xt−1,
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Figure 2. Illustration of positive and negative data samples used in predicting ≥C-class flares. In the left panel, the red vertical line
indicates the start time of a ≥C-class flare. The data samples collected in the 24 hours prior to the red vertical line are labeled positive (in
green color). In the right panel, the red vertical line indicates the start time of an A-class or B-class flare. The data samples collected in
the 24 hours prior to the red vertical line are labeled negative (in yellow color).

Hour Data samples ≥M5.0 class ≥M class ≥C class
24 Positive 2,125 13,989 244,968

Negative 461,060 449,196 218,517
48 Positive 2,255 16,709 316,149

Negative 615,708 602,154 304,714
72 Positive 2,375 18,505 356,219

Negative 704,997 689,567 350,953

Table 5. Total numbers of positive and negative data samples in each class for 24-, 48-, and 72-hour ahead flare predictions.

xt where xt is the data sample at time point t (Abduallah
et al., 2022). (In the study presented here, m is set to 10.)
The input layer is followed by a BN layer. BN is an addi-
tional mechanism to stabilize SolarFlareNet, make it faster,
and help to avoid overfitting during training (Zerveas et al.,
2021). We applied BN after the input layer, the LSTM
layer, and within the TEBs to make sure that SolarFlareNet
is stable throughout the training process. The BN layer is
followed by the Conv1D layer because time series gener-
ally have a strong 1D time locality that can be extracted by
the Conv1D layers (Kravchik & Shabtai, 2018). Then, the
LSTM layer is used, which is equipped with regularization
to also avoid overfitting. LSTM is suitable for handling time
series data to capture the temporal correlation and depen-
dency in the data. Adding an LSTM layer after a Conv1D
layer has shown significant improvement in time series pre-
diction(Abduallah et al., 2021b; 2022b;a). The LSTM layer
passes the learned features and patterns to a BN layer to
stabilize the network before the data go to the TEBs.

We use transformer encoders without decoders because we
process time series here, rather than performing natural
language processing where the decoders are required to
decode the words for sentence translation. The number
of TEBs is set to 4. This number has a significant effect
on the overall performance of the model (Vaswani et al.,
2017). When we use less than 4 TEBs, the model is not
able to learn useful patterns and is under-fitted. When we

use more than 4 TEBs, the large number of TEBs causes
overhead on the encoder processing while the model tends
to do excessive overfitting and lean toward the majority
class (i.e., negative class) in the data, ignoring the minority
class (i.e., positive class) entirely. Each TEB is configured
with a dropout layer, multi-head attention (MHA) layer, a
BN layer, a Conv1D layer, and an LSTM layer. The MHA
layer is the most important layer in the encoder because it
provides the transformation on the sequence values to obtain
the different metrics. The MHA layer is configured with 4
heads and each attention head is also set to 4. The dropout
layer is mainly used to overcome the overfitting caused by
the imbalanced data. It drops a percentage of the neurons
from the architecture, which causes the internal architecture
of the model to change, allowing for better performance and
stability. Finally, the softmax function is used as the final
activation function, which produces a probabilistic estimate
of how likely a flare will occur within the next 24 (48, 72,
respectively) hours of t.

4.5. Ablation Study

We performed ablation tests to assess each component
of SolarFlareNet. We consider four variants of So-
larFlareNet, denoted SolarFlareNet-Conv, SolarFlareNet-
L, SolarFlareNet-ConvL, and SolarFlareNet-T, respectively.
Here, SolarFlareNet-Conv (SolarFlareNet-L, SolarFlareNet-
ConvL, SolarFlareNet-T, respectively) represents the subnet
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Figure 3. Architecture of SolarFlareNet.

of SolarFlareNet in which the Conv1D layer (LSTM layer,
Conv1D and LSTM layers, transformer network with the 4
TEBs, respectively) is removed while keeping the remain-
ing components of the SolarFlareNet framework. Table 6
compares the TSS values of the five models for the 24-, 48-,
and 72-hour ahead flare prediction. It can be seen from
Table 6 that the full model, SolarFlareNet, outperforms the
four subnets in terms of the TSS metric. This happens be-

cause the SolarFlareNet-Conv model captures the temporal
correlation of the test data, but does not learn additional
characteristics of the data to build a stronger relationship
between the test data. SolarFlareNet-L captures the prop-
erties of the test data, but lacks knowledge of the temporal
correlation patterns in the data to deeply analyze the se-
quential information in the test data. It can also be seen
from Table 6 that the SolarFlareNet-ConvL model is not as
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Hour Method ≥M5.0 class ≥M class ≥C class
24 SolarFlareNet 0.818 (0.021) 0.839 (0.030) 0.835 (0.048)

SolarFlareNet-Conv 0.780 (0.036) 0.759 (0.052) 0.822 (0.023)
SolarFlareNet-L 0.779 (0.022) 0.737 (0.041) 0.713 (0.039)
SolarFlareNet-ConvL 0.742 (0.029) 0.719 (0.041) 0.728 (0.037)
SolarFlareNet-T 0.716 (0.101) 0.704 (0.093) 0.712 (0.078)

48 SolarFlareNet 0.736 (0.112) 0.728 (0.090) 0.719 (0.079)
SolarFlareNet-Conv 0.729 (0.049) 0.715 (0.055) 0.695 (0.035)
SolarFlareNet-L 0.694 (0.066) 0.689 (0.012) 0.675 (0.021)
SolarFlareNet-ConvL 0.681 (0.063) 0.676 (0.054) 0.673 (0.048)
SolarFlareNet-T 0.662 (0.061) 0.647 (0.032) 0.641 (0.033)

72 SolarFlareNet 0.729 (0.108) 0.714 (0.095) 0.709 (0.058)
SolarFlareNet-Conv 0.703 (0.042) 0.696 (0.011) 0.658 (0.023)
SolarFlareNet-L 0.688 (0.046) 0.666 (0.039) 0.658 (0.016)
SolarFlareNet-ConvL 0.665 (0.026) 0.643 (0.031) 0.632 (0.030)
SolarFlareNet-T 0.635 (0.028) 0.624 (0.046) 0.619 (0.033)

Table 6. TSS values of the five methods considered in the ablation study.

good as the full model, indicating that the transformer net-
work alone is not enough to produce the best results. Lastly,
SolarFlareNet-T has the least performance among the four
subnets, demonstrating the importance of the transformer
network. In conclusion, our ablation study indicates that the
performance of the proposed SolarFlareNet framework is
not dominated by any single component. In fact, all compo-
nents have made contributions to the overall performance
of the proposed framework.

References
Abduallah, Y., Wang, J. T. L., Nie, Y., Liu, C., and Wang, H.

DeepSun: Machine-learning-as-a-service for solar flare
prediction. Research in Astronomy and Astrophysics, 21
(7):160, Aug 2021a. URL https://doi.org/10.
1088/1674-4527/21/7/160.

Abduallah, Y., Wang, J. T. L., Shen, Y., Alobaid, K. A.,
Criscuoli, S., and Wang, H. Reconstruction of total solar
irradiance by deep learning. In Proceedings of the 34th
International Florida Artificial Intelligence Research So-
ciety Conference, 2021b. URL https://doi.org/
10.32473/flairs.v34i1.128356.

Abduallah, Y., Jordanova, V. K., Liu, H., Li, Q., Wang, J.
T. L., and Wang, H. Predicting solar energetic particles
using SDO/HMI vector magnetic data products and a
bidirectional LSTM network. The Astrophysical Journal
Supplement Series, 260(1):16, May 2022.

Abduallah, Y., Wang, J. T. L., Bose, P., Zhang, G., Gerges,
F., and Wang, H. Forecasting the disturbance storm
time index with Bayesian deep learning. In Proceedings
of the 35th International Florida Artificial Intelligence

Research Society Conference, 2022a. URL https:
//doi.org/10.32473/flairs.v35i.130564.

Abduallah, Y., Wang, J. T. L., Xu, C., and Wang, H. A
transformer-based framework for geomagnetic activity
prediction. In Proceedings of the 26th International Sym-
posium on Methodologies for Intelligent Systems, Oct.
2022b. ISBN 978-3-031-16563-4. URL https://
doi.org/10.1007/978-3-031-16564-1_31.

Bobra, M. G. and Couvidat, S. Solar flare prediction using
SDO/HMI vector magnetic field data with a machine-
learning algorithm. The Astrophysical Journal, 798:135,
Jan 2015.

Bobra, M. G. and Ilonidis, S. Predicting coronal mass ejec-
tions using machine learning methods. The Astrophysical
Journal, 821(2):127, April 2016.

Bobra, M. G., Sun, X., Hoeksema, J. T., Turmon, M., Liu,
Y., Hayashi, K., Barnes, G., and Leka, K. D. The He-
lioseismic and Magnetic Imager (HMI) vector magnetic
field pipeline: SHARPs - Space-weather HMI Active Re-
gion Patches. Solar Physics, 289:3549–3578, September
2014.

Chen, Y., Manchester, W. B., Hero, A. O., Toth, G., Du-
Fumier, B., Zhou, T., Wang, X., Zhu, H., Sun, Z., and
Gombosi, T. I. Identifying solar flare precursors using
time series of SDO/HMI images and SHARP parameters.
Space Weather, 17(10):1404–1426, 2019.

Daglis, I., Baker, D., Kappenman, J., Panasyuk, M., and
Daly, E. Effects of space weather on technology infras-
tructure. Space Weather, 2:S02004, 2004.

Deng, Y., Lu, L., Aponte, L., Angelidi, A. M., Novak, V.,
Karniadakis, G. E., and Mantzoros, C. S. Deep transfer

https://doi.org/10.1088/1674-4527/21/7/160
https://doi.org/10.1088/1674-4527/21/7/160
https://doi.org/10.32473/flairs.v34i1.128356
https://doi.org/10.32473/flairs.v34i1.128356
https://doi.org/10.32473/flairs.v35i.130564
https://doi.org/10.32473/flairs.v35i.130564
https://doi.org/10.1007/978-3-031-16564-1_31
https://doi.org/10.1007/978-3-031-16564-1_31


A Deep Learning Approach to Operational Flare Forecasting

learning and data augmentation improve glucose levels
prediction in type 2 diabetes patients. Nature Portfolio
Journal Digital Medicine, 4:1013345, July 2021.

Deng, Z., Wang, F., Deng, H., Tan, L., Deng, L., and Feng,
S. Fine-grained solar flare forecasting based on the hy-
brid convolutional neural networks. The Astrophysical
Journal, 922(2):232, December 2021.

Gallagher, P. T., Moon, Y. J., and Wang, H. Active-region
monitoring and flare forecasting I. Data processing and
first results. Solar Physics, 209(1):171–183, September
2002.

Georgoulis, M. K., Bloomfield, D. S., Piana, M., Massone,
A. M., Soldati, M., Gallagher, P. T., Pariat, E., Vilmer,
N., Buchlin, E., Baudin, F., Csillaghy, A., Sathiapal, H.,
Jackson, D. R., Alingery, P., Benvenuto, F., Campi, C.,
Florios, K., Gontikakis, C., Guennou, C., Guerra, J. A.,
Kontogiannis, I., Latorre, V., Murray, S. A., Park, S.-H.,
von Stachelski, S., Torbica, A., Vischi, D., and Worsfold,
M. The flare likelihood and region eruption forecasting
(FLARECAST) project: flare forecasting in the big data
& machine learning era. J. Space Weather Space Climate,
11:39, 2021. URL https://doi.org/10.1051/
swsc/2021023.

Hazra, S., Sardar, G., and Chowdhury, P. Distinguishing
between flaring and nonflaring active regions. Astronomy
& Astrophysics, 639:A44, July 2020.

He, X.-r., Zhong, Q.-z., Cui, Y.-m., Liu, S.-q., Shi, Y.-r.,
Yan, X.-h., and Wang, Z.-s.-y. Solar flare short-term
forecast model based on long and short-term memory
neural network. Chinese Astronomy and Astrophysics, 47
(1):108–126, January 2023.

Hoeksema, J. T., Liu, Y., Hayashi, K., Sun, X., Schou, J.,
Couvidat, S., Norton, A., Bobra, M., Centeno, R., Leka,
K. D., Barnes, G., and Turmon, M. The Helioseismic and
Magnetic Imager (HMI) vector magnetic field pipeline:
Overview and performance. Solar Physics, 289(9):3483–
3530, September 2014.

Huang, X., Wang, H., Xu, L., Liu, J., Li, R., and Dai, X.
Deep learning based solar flare forecasting model. I. Re-
sults for line-of-sight magnetograms. The Astrophysical
Journal, 856(1):7, March 2018.

Huang, X., Zhang, L., Wang, H., and Li, L. Improving
the performance of solar flare prediction using active
longitudes information. Astronomy & Astrophysics, 549:
A127, 2013. URL https://doi.org/10.1051/
0004-6361/201219742.

Jonas, E., Bobra, M., Shankar, V., Todd Hoeksema, J., and
Recht, B. Flare prediction using photospheric and coronal
image data. Solar Physics, 293(3):48, March 2018.

Kravchik, M. and Shabtai, A. Detecting cyber attacks
in industrial control systems using convolutional neu-
ral networks. In Proceedings of the 2018 Workshop
on Cyber-Physical Systems Security and PrivaCy, 2018.
ISBN 9781450359924. URL https://doi.org/10.
1145/3264888.3264896.

Kruskal, J. B. Nonmetric multidimensional scaling: A
numerical method. Psychometrika, 29(2):115–129, 1964.

Leka, K. D. and Barnes, G. Photospheric magnetic field
properties of flaring versus flare-quiet active regions. IV.
A statistically significant sample. The Astrophysical Jour-
nal, 656(2):1173–1186, February 2007.

Li, K., Daniels, J., Liu, C., Herrero, P., and Georgiou, P.
Convolutional recurrent neural networks for glucose pre-
diction. IEEE Journal of Biomedical and Health Infor-
matics, 24(2):603–613, 2020.

Li, X., Zheng, Y., Wang, X., and Wang, L. Predicting solar
flares using a novel deep convolutional neural network.
The Astrophysical Journal, 891(1):10, March 2020.

Liu, C., Deng, N., Wang, J. T. L., and Wang, H. Predicting
solar flares using SDO/HMI vector magnetic data prod-
ucts and the random forest algorithm. The Astrophysical
Journal, 843:104, 2017.

Liu, H., Liu, C., Wang, J. T. L., and Wang, H. Predicting
solar flares using a long short-term memory network. The
Astrophysical Journal, 877(2):121, jun 2019.

Liu, H., Liu, C., Wang, J. T. L., and Wang, H. Predicting
coronal mass ejections using SDO/HMI vector magnetic
data products and recurrent neural networks. The Astro-
physical Journal, 890(1):12, feb 2020.

Liu, S., Xu, L., Zhao, Z., Erdélyi, R., Korsós, M. B., and
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